Linear programming twin support vector regression
نویسندگان
چکیده
منابع مشابه
Reduced twin support vector regression
Wepropose the reduced twin support vector regressor (RTSVR) that uses the notion of rectangular kernels to obtain significant improvements in execution time over the twin support vector regressor (TSVR), thus facilitating its application to larger sized datasets. & 2011 Elsevier B.V. All rights reserved.
متن کاملA weighted twin support vector regression
Twin support vector regression (TSVR) is a new regression algorithm, which aims at finding -insensitive upand down-bound functions for the training points. In order to do so, one needs to resolve a pair of smaller-sized quadratic programming problems (QPPs) rather than a single large one in a classical SVR. However, the same penalties are given to the samples in TSVR. In fact, samples in the di...
متن کاملA novel twin support vector regression
Twin support vector regression (TSVR), as an effective regression machine, solves a pair of smaller-sized quadratic programming problems (QPPs) rather than a single large one as in the classical support vector regression (SVR), which makes the learning speed of TSVR approximately 4 times faster than that of the SVR. However, the empirical risk minimization principle is implemented in TSVR, whic...
متن کاملLinear programming support vector machines
Based on the analysis of the conclusions in the statistical learning theory, especially the VC dimension of linear functions, linear programming support vector machines (or SVMs) are presented including linear programming linear and nonlinear SVMs. In linear programming SVMs, in order to improve the speed of the training time, the bound of the VC dimension is loosened properly. Simulation resul...
متن کاملRobust Linear and Support Vector Regression
ÐThe robust Huber M-estimator, a differentiable cost function that is quadratic for small errors and linear otherwise, is modeled exactly, in the original primal space of the problem, by an easily solvable simple convex quadratic program for both linear and nonlinear support vector estimators. Previous models were significantly more complex or formulated in the dual space and most involved spec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2017
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil1707123t